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Summary 
Imaging techniques using waves to probe unknown media have long existed. 

Classically, these techniques can be divided into a phase of data gathering and a 
phase of data processing. During the data-gathering phase, waves are emitted by a 
source or source array, propagated through the medium being studied, and are then 
recorded by a receiver array. The processing phase consists in extracting information 
about the medium from the data recorded by the receivers. Recently, new ideas have 
emerged driven by observations made during time-reversal experiments. Based on 
these observations, new imaging methods have been developed using cross 
correlations of the signals recorded by sensor arrays. Mathematical analysis has 
shown that the cross correlation of signals recorded by two passive sensors essentially 
contains as much information about the medium as the signal that would have been 
recorded if one of the sensors were active (emitter) and the other passive (receiver). 
The important point demonstrated by this analysis is that uncontrolled sources of 
ambient noise can be used instead of controlled sources to compute cross correlations 
and use them for imaging. This possibility has attracted the attention of researchers 
in mathematics, in the domain of probabilities, for profound theoretical reasons, 
because the idea of useful noise overturns the customary distinction between signal 
and noise. This has also been the case in seismology for obvious practical reasons 
concerning the sparsity of sources (earthquakes) and the impossibility of controlling 
them. The aim of this paper is to describe how the idea of exploiting ambient noise to 
address problems of imaging took shape. 
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This text is based on the research I have been conducting over the last few 
years, mainly with my colleague George Papanicolaou of Stanford University. When 
presenting our work to audiences of mathematicians, we usually start by explaining 
the methods and results and then give the proofs. The present text will rather retrace 
the story that led us to study noise with a view to applications in the field of imaging. 
Our goal was to build images from signals hitherto considered to be pure noise, that 
is to say completely unusable signals. 

According to one definition, noise corresponds to random, unwanted or even 
parasitic signals overlying some useful signals. This definition presupposes a 
distinction between useful and non-useful signals, and all noise is rejected in the 
second category. While working with seismologists, we realized that what they called 
“noise”, and considered to be useless, had never been subject to careful study, and 
consequently had never had the chance to be considered useful. Thus, for nearly a 
century, seismologists have been discarding signals that actually contain a wealth of 
information. 

The context for this story is imaging, the aim of which is to produce pictures of 
an object in the broadest sense – the human body, for example, in the case of 
medical imaging, or the Earth’s crust in the case of seismology. The general principle 
consists in using waves to probe the medium in question. The waves are emitted by a 
source or a source array, they propagate through and interact with the medium, and 
they are then recorded by a sensor array. These recordings constitute the data set that 
is then processed to extract the desired information (position, shape, and 
characteristics of a buried object, for example). Imaging may involve reflection 
techniques, as in optics, for example, where light is projected onto the object and 
whatever it reflects is photographed, or in ultrasound echography, where ultrasound 
waves are reflected by the obstacles they encounter in the human body. Other 
techniques involve transmission, for example X-ray radiography. The classic 
contribution of probability consists in quantifying the impact of noise and limiting it 
as far as possible. From the probabilistic perspective, the important thing for imaging 
specialists is to eliminate noise, in other words, to increase the signal-to-noise ratio. 
That is their main objective; ours is very different. 

Let us consider the context is geophysics, where the aim is to produce images 
of the interior of the Earth. Applied geophysics focuses above all on the upper layers 
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of the Earth’s crust in the search for mineral, oil and gas deposits. Seismology is a 
subdiscipline of geophysics. It studies the propagation of seismic waves. By 
constructing a map of the propagation velocity of seismic waves in the Earth’s crust, 
we can obtain a picture of the Earth’s crust, because the propagation velocity is 
characteristic of the medium. The classic method of constructing such maps, used since 
the 19th century, consists in analysing the signals from a seismometer network spread 
over the Earth’s surface. The seismic waves produced by earthquakes are signals that 
scientists seek to record and analyse. 

 

 
 
Figure 1: A seismogram 

 
In this seismogram (Figure 1), signals were recorded over a period of 14 

hours, with each line corresponding to a half hour of recording. Essentially, the only 
thing that is recorded is noise, noise and yet more noise, but at a certain moment, the 
passage of a seismic wave produced by an earthquake is recorded. Seismologists are 
interested in the little section of recording that corresponds to the passage of the 
seismic wave. The only information they use is the arrival time; they record the time 
at which the seismic wave passes through the site of the seismometer.3 By recording 

                                                 
3 In fact, seismic waves are elastic and an earthquake can emit several different types of seismic waves, which 
propagate at different speeds. Several arrival times can thus be detected, each corresponding to a particular type 
of wave. 
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the arrival times of the seismic wave over a seismometer array, it is possible to make 
an estimation of the velocity map of the propagation of seismic waves through the 
Earth’s crust. If the positions of the seismometers have been clearly identified, and 
the arrival times of the seismic wave have been accurately recorded, then it is possible 
to estimate the wave propagation velocity, by means of least-square rules.4 

Seismologists also often adopt a Bayesian approach. Figure 2 illustrates the 
underlying principle. An a priori model of a seismic velocity map is defined (it could 
even be a uniform a priori model, since our first intuition is that wave velocity will be 
uniform). An earthquake happens somewhere, the arrival times of the seismic wave 
created by the earthquake are recorded, and then, according to how these arrival 
times fit or diverge from the predictions, the a priori model is updated to produce an 
a posteriori model. So that is a rough outline of classic seismology. 
 

 
Figure 2: Classic seismology model 
 

It produces the type of map presented in Figure 3, which shows the variations 
in seismic wave velocity on large scale, at a global level. Here we see the variations in 
depth following a line running from Europe to Japan. These maps exist on a large 
scale or on much more reduced scales. 

 

                                                 
4 Actually these are slightly more complicated rules of travel time tomography. 
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Figure 3: Maps of variations in seismic wave velocity on a large scale from 
Europe to Japan 

 
So classic seismology uses the information contained in the arrival times of 

seismic waves. It operated in this way for nearly a century. In the 1950s, however, 
(with the work of Keiiti Aki [Aki and Chouet, 1975]), interest was also focused on the 
information contained in the “coda” (the small oscillations following the wave front), 
where the rate of decrease provides information about the diffusion rate of seismic 
waves in the medium. By extracting the attenuation coefficient, one can obtain 
information about the properties of the medium. In the 1980s, researchers started 
trying to exploit the coda. Whether working on arrival time tomography or coda 
analysis, however, one has to wait for an earthquake powerful enough for the 
seismometers to record a seismic wave. This is easy in some regions of the world, like 
California, but less so in others where the sources (earthquakes) are infrequent and it 
is difficult to do imaging. 

Nevertheless, as we can see in the seismogram in Figure 1, outside the brief 
interval corresponding to the passage of a seismic wave created by an earthquake, 
seismic background noise can be observed. 
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Now I would like to explain how the idea of studying and exploiting seismic 
noise arose. At this stage, the story gets rather complicated; it follows a circuitous 
path originating not far from the rue Gazan in Paris, at the École Supérieure de 
Physique et de Chimie Industrielles (School of Industrial Physics and Chemistry). 
Physicists – acousticians from the Langevin Institute – developed a new technique for 
medical applications called the “time reversal of ultrasonic waves”. 

This technique is based on a mathematical property of the wave equation 
known as time-reversal invariance.5 This gave Mathias Fink the idea for an original 
experiment. The time-reversal experiment is based on a special apparatus called a 
time-reversal mirror, consisting of a collection of transducers – little devices that have 
two operating modes and can be used sometimes as transmitters and other times as 
receivers. In a time-reversal experiment, this mirror is first used as a receiver array 
and then as a transmitter array. A time-reversal experiment proceeds as follows 
(Figure 4). A source buried in the medium emits an acoustic pulse. 

 

 
Figure 4: Time reversal – the principle underlying the experiment (Tourin et 
al., 2000) 

 
The pulse then propagates through the medium, which may or may not be 
homogeneous, and the signals arriving at the time-reversal mirror (TRM in Figure 4) 
are recorded. So the first part of the experiment is a phase of data capture: the 
signals emitted by a source and recorded by the mirror are stored on a computer. The 

                                                 
5 If a function is a solution to the wave equation, and therefore a function of time and space, then the same 
function with the time reversed is also a solution to the wave equation. 
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signals are time-reversed, so that what came first now comes at the end, and what 
was at the end now comes first. Then the mirror is used as a transmitter array, and 
the time-reversed signals are sent out again. 

Fink’s reasoning was that since the wave equation is time-reversal invariant, 
the wave that is sent back should repeat its trajectory in reverse and focus on the 
original source point. His first objective was to focus sound waves on a kidney stone to 
destroy it, although this was followed by other applications. Once he had built the 
apparatus, his first experiment was conducted in a tank of water – a perfectly 
homogeneous medium. In the homogeneous medium, Fink developed a theory to 
predict the focal spot size, in other words the volume on which he would be able to 
focus the acoustic energy. 

 

 
Figure 5: Time reversal – refocusing of the wave on the original source 
point (Tourin et al., 2000) 

 
Conducting experiments in the water tank, he obtained focusing results 

consistent with the theoretical predictions for a homogeneous medium. Before 
attempting to focus ultrasound waves on the kidney stones of real patients, he wanted 
to test the technique in heterogeneous media to verify that the energy focused equally 
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well. He therefore repeated the experiment, but with the introduction of 
inhomogeneities into the medium, in the form of metal rods. Repeating the 
experiment with increasing numbers of metal rods, he observed that the focusing 
became more and more efficient. The more heterogeneous the medium, the better 
the focusing (Figure 5). 

At the end of the 1990s, this experiment was presented to a CNRS (French 
National Center for Scientific Research) research group containing a number of 
mathematicians, specialists in wave propagation in random media, who were 
astonished to learn that the results improved as the level of heterogeneity increased. 
These mathematicians then carried out research to clarify the relation between the 
refocused signal observed during a time-reversal experiment and Green’s function, 
that is to say, the fundamental solution to the wave equation. Green’s function is 
what we measure at an observation point (x) when we emit a short pulse from a 
source point (y) in a direct propagation experiment (Figure 6). In the time-reversal 
experiment (Figure 7), a source at y emits a short pulse that propagates through the 
medium; the signals are recorded on the time-reversal mirror; they are then time-
reversed and re-emitted, and we record the new signal obtained at x. Although the 
direct propagation and time-reversal experiments appear to be very different, we can 
observe a relation between the refocused signal obtained at x in the time-reversal 
experiment and the direct signal obtained at x from a source point at y. 

 
Figure 6: Green’s function – signal measured at x when a source at y emits 
a short signal. 
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These are two experiments that do not appear to have anything in common, 
and yet they are equivalent – except for one symmetrization – since the signal 
refocused at x in the time-reversal experiment is a slightly distorted version of 
Green’s function (the causal version and the anti-causal version are superimposed). 

 
Figure 7: Time reversal – from the emission of a short signal at y to the 
refocusing of the time-reversed wave 

 
The researchers in mathematics (Papanicolaou, myself and others) worked on 

these problems from the end of the 1990s up until 2005–06, seeking to explain why 
the experiment worked, and why it worked even better in a random medium (Fouque 
et al., 2007). Our mathematical analysis of time reversal for ultrasounds, that is, the 
study of the time-reversal operator, led us to discover that disorder does indeed 
increase the focusing capacity of the waves. These results were presented to the CNRS 
research group, which included specialists in very different fields: optical scientists, 
acousticians, mathematicians, and also seismologists. The latter observed that it was 
not possible for them to build a time-reversal mirror of the vast size needed to send 
seismic waves back through the Earth’s crust, thereby raising the question of the 
utility of these ideas for their discipline. 

The answer came in 2005: the time-reversal operator has the same form as a 
cross-correlation operator, which is used on stationary random signals (the signals 
used by mathematicians to model noise). This observation is of little interest in 
ultrasound imaging, but of great interest in seismology, where phenomenal 
quantities of noise are available (networks consisting of several thousand 
seismometers), together with years of seismic noise recordings waiting to be used. 
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The principle is the following (Figure 8): the circles represent sources of 
noise (○) emitting stationary random signals with zero mean and with any power 
spectral density – it could even be white noise. These continuously emitted signals 
propagate through the medium and are recorded by two sensors at points x and y. 
Figure 8 (right-hand side) shows the signals recorded at x and at y: we observe that 
noise is emitted, and noise is then recorded. 

 
Figure 8: Cross correlation of ambient noise: configuration (left-hand 
figure), signals recorded and cross correlation of signals (right-hand figure) 

 
The question is whether one can extract information from the recordings 

made at two observation points, and in particular whether it is possible to estimate 
the propagation velocity of waves between x and y. The answer to this question 
depends on the calculation of the cross correlation: 

 

C T
yx, (t) = 

1
T 0

T∫ ux(s)uy (t + s)ds 

 
We take the signal ux(s) recorded at x, then the signal uy(s) recorded at y, shift 

the latter by a time interval t, then multiply the two together and calculate the 
average over the whole time window of the observation. If we have a large quantity 
of noise, that is to say, a very long observation time, then we can obtain a relation 
between this cross correlation and the signal recorded at x in the time-reversal 
experiment with the source point at y (Figure 7). As mentioned above, there is a 
relation between the signal recorded in the time-reversal experiment and the signal 
recorded in the direct experiment with source point at y and observation point at x. 
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Consequently, there is a relation between the Green’s function recorded in the direct 
propagation experiment and the cross correlation of the noisy signals recorded in the 
experiment with sources of stationary noise. As we know that the Green’s function has 
a wave-front – a main peak – which gives the travel time, we can use this relation to 
propose a method of estimating the travel time between x and y based on the cross 
correlation of noisy signals. Finally, if we know the travel time between x and y, then 
to the extent that we also know the distance between x and y, we can obtain an 
estimation of the wave velocity between x and y by dividing the one by the other. 

 
Figure 9: Cross correlation of ambient noise signals recorded at x and y 
 

In the cross correlation experiment (Figure 9), there is no time-reversal 
mirror, but we do have sources of noise (the circles) emitting waves that are 
propagated and then recorded at x and y. We then compute the cross correlation of 
the signals recorded and obtain a relation with the Green’s function between x and y, 
except for one symmetrization and one convolution, because the power spectral 
density of the sources remains. If the sources emit white noise, the equality is perfect; 
if they emit “coloured” noise, that is to say, the power spectral density is not flat, the 
Green’s function will be filtered by the spectral density of the sources. In other words, 
if there is a gap in the noise spectrum within a certain range of frequencies, then it 
will not be possible to estimate the Green’s function within that range of frequencies. 

The implementation of these ideas took time, because it was necessary to 
understand the properties of a mathematical object that constantly reappeared: the 
time-reversal operator. This operator models the time-reversal experiment and can 
be defined as the result of the convolution of two Green’s functions, one of which is 

© Cournot Centre, November 2012



11 
 

time reversed. This operator also comes into play in the modelling of cross 
correlations of noisy signals. This is because a correlation is similar to the composition 
of a convolution with a time reversal. The implementation of this technique of 
estimating travel times by computing cross correlations works remarkably well in the 
field of seismology. 
 

 
 
Figure 10: Comparison between Green’s function and cross correlation 
between two sensors (Shapiro et al., 2005) 

 
Figure 10 presents the first results obtained for Southern California (Shapiro 

et al., 2005). This figure compares three plots that resemble each other, and yet they 
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were not obtained in the same way. The first plot is the signal recorded by the PHL 
seismometer of an earthquake centred on point 1. The second plot is the cross 
correlation of the seismic noise recorded over one year by the seismometers MLAC 
and PHL. In this case, point 1, which is the epicentre of the earthquake, corresponds 
almost exactly to the location of the seismometer MLAC. This enabled researchers to 
make a comparison between the direct signal produced by the seismic source and the 
cross correlation between the seismic noise recorded by the two seismometers MLAC 
and PHL. There is a perfect match. The third plot shows three cross correlations 
obtained with three sets of four-months’ worth of signals, and we can see that the 
cross correlations are practically identical. The slight discrepancy shows that we need 
a large quantity of noise for the cross correlation to produce the same result as we get 
with a real, impulsive seismic source. This demonstration is what everybody was 
waiting for: now it was no longer necessary to wait for earthquakes to do seismic 
imaging; one only had to continuously record seismic noise, to consider the signals for 
each pair of seismometers, and then to calculate all the cross correlations.6 

Figure 11 shows an array of about 60 sensors. The straight lines represent all 
the estimations of travel times that have been obtained between all the pairs of 
seismometers. This can then be used to draw up velocity maps of seismic wave 
propagation (Figure 12) that the seismologists find not only satisfactory, but actually 
better than those based on recordings of signals produced by earthquakes, because 
the latter are often high-frequency signals that do not penetrate very deeply into the 
Earth’s crust. 
Before speaking of other applications, I should specify where the seismic noise comes 
from. Not only in Southern California, but over the whole surface of the globe, the 
low-frequency components (periods of 1 to 10 seconds) come from the ocean, and 
more precisely from the interaction of waves with the ocean floor. This is not 
surprising in California, being close to the ocean, but the experiment has been carried 
out all over the planet – in the Alps, in Tibet – and even in Tibet the seismic noise 
comes from the oceans. One surprising manifestation of this origin of seismic noise 
was observed in California in 2005. It had been observed that most of the noise 
always came from the west, except for one short period when the direction of the flow 
                                                 
6 In fact, seismic background noise is comprised above all of low-frequency components, whereas signals from 
earthquakes contain primarily high-frequency components, so the two techniques are also complementary. 
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was reversed, and that was when the hurricane Katrina hit Louisiana. Likewise, there 
is a seasonal effect between winter and summer in Tibet, with periods when the noise 
comes mainly from the Indian Ocean and others when it comes mainly from the 
Pacific. Now, a great many researchers work on seismic noise. A new world has 
opened up, where stocks of data await eager researchers who can now use them to do 
imaging.7 

 

 
Figure 11: Estimated travel times between pairs of sensors (Shapiro et al., 
2005) 
 

Today, this research is conducted by seismologists like Michel Campillo of the 
ISTerre (Institute of Earth Sciences) in Grenoble. The results obtained for the imaging 
of volcanoes are particularly interesting. This is imaging at a finer scale, using seismic 
noise at higher frequencies. The advantage is speed: maps can be drawn up in a day! 

                                                 
7 See the special issue of CRAS Geoscience (2011), 343 (8–9). 
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This was first implemented to map the Piton de la Fournaise: by carrying out daily 
imaging, starting with data from previous years, the seismologists realized that they 
were capable of such precise imaging that they could see fluctuations in wave velocity 
of less than one in a thousand, forewarning of an eruption. They were thus able to 
predict the most recent eruption of the Piton de la Fournaise three weeks in advance 
(compared with a previous maximum of 48 hours). So the method works at different 
scales. It could almost certainly be useful in the search and monitoring of gas or oil 
deposits or CO2 storage. 

 

 
Figure 12: Estimated sound speed based on estimated travel times (Shapiro 
et al., 2005) 
 

This research has also been pursued on a more theoretical level by 
mathematicians. Figure 13 shows a very recent development in imaging, where 
instead of estimating the sound speed, the aim is to locate reflectors – more or less 
distant objects. 

The first diagram in Figure 13 shows noise sources, five sensors and a 
reflector buried in the medium (diamond in Figure 13). The question is whether one 
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can find the reflector by using the signals emitted by the noise sources and recorded 
by the five sensors. The answer is yes, thanks to the method described above. By 
calculating the cross correlations, pair by pair, of all the pairs of sensors, we obtain a 
matrix of cross correlations. The image obtained in Figure 13 (bottom) results from 
the migration of the 10 available cross correlations. With the signals emitted by the 
ambient noise sources, we can obtain an image and determine the location of the 
reflector. Papanicolaou and I have been working on the imaging of reflectors for 
about two years now. It is not as straightforward as the estimation of travel times, 
because we have to use migration techniques that are rather complicated to apply to 
these sorts of matrices of results. So this is still a work in progress. 

 
Figure 13: Ambient noise imaging of a reflector 

 
Other researchers are working on various extensions of the method, including 

applications to unexpected domains like lunar seismology. In fact, NASA has stored 
almost one years’ worth of signals recorded by an array of four seismometers 
installed on the moon’s surface during the Apollo 17 mission. By computing cross 
correlations, it has been possible to extract information from these old recordings 
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(Larose et al., 2005). The seismic noise on the surface of the moon derives from the 
large thermal contrasts that crack the rocks, constantly producing noise on the 
surface. It is also possible to extend the technique to imaging the internal structure of 
the sun, a study known as helioseismology. In fact, the experiment turns out to be 
easier to do on the sun than it is on the Earth. Because of its solidity, the waves that 
propagate through the Earth are not acoustic but elastic, entailing different modes 
and speeds of propagation. Since the sun is fluid, all the waves are acoustic, and 
there is only one propagation speed. By observing the pulsations of the sun, through 
the Doppler effect, we now know more about the internal structure of the sun than 
about that of the Earth. We obtain many more details, and in three dimensions, 
moreover, rather than a simplified image with spherical symmetry. Some researchers 
are applying this technique to other stars, practising what they call 
“asteroseismology”, and thus producing images of the internal structure of distant 
stars. 

Papanicolaou and I are now working on a new domain of wave imaging, 
studying the propagation of microwaves. These are no longer acoustic waves. We are 
seeking to do passive imaging in the range of frequencies around 2 gigahertz, 
because this range contains a lot of noise from Wi-Fi terminals, mobile phone stations 
and mobile phones, creating a sea of microwaves in which we are constantly 
immersed. We are trying to determine, with some results already, whether it is 
possible, for example, to perform geolocation and then imaging based on this 
ambient microwave noise. The use of noise in imaging has enabled a major 
breakthrough, the future developments of which will continue to surprise us. 
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